Course
Data Science
Machine Learning
Basic Science
Continuing Education

Machine Learning Models in Science

0 credit hours

Credits awarded upon completion

Self-Paced

Progress at your own speed

11.84 hours

Estimated learning time

About the Course

Description

This course is aimed at anyone interested in applying machine learning techniques to scientific problems. In this course, we'll learn about the complete machine learning pipeline, from reading in, cleaning, and transforming data to running basic and advanced machine learning algorithms. We'll start with data preprocessing techniques, such as PCA and LDA. Then, we'll dive into the fundamental AI algorithms: SVMs and K-means clustering. Along the way, we'll build our mathematical and programming toolbox to prepare ourselves to work with more complicated models. Finally, we'll explored advanced methods such as random forests and neural networks. Throughout the way, we'll be using medical and astronomical datasets. In the final project, we'll apply our skills to compare different machine learning models in Python.

This Course is part of a program

You can only buy it along with program.

Sections

Schedule

Asynchronous

Delivery method

Online

Deliverables

  • 0 Credits

    Academic Excellence

    Earn necessary number of credit hours for completing this content